/* * Copyright (c) Camden Dixie O'Brien * SPDX-License-Identifier: AGPL-3.0-only */ #define _POSIX_C_SOURCE 199309L #include #include #include #include #include #include #include #define MAZE_SIZE 24 #define GRID_SIZE (2 * MAZE_SIZE - 1) #define MARGIN 2 #define WALL_THICKNESS 1 #define WINDOW_SIZE (GRID_SIZE + 2 * (WALL_THICKNESS + MARGIN)) #define PX(x) ((x) << 3) #define GOAL (GRID_SIZE - 1) typedef enum { LEFT, RIGHT, UP, DOWN } dir_t; typedef struct { int x, y; } vec2_t; static const struct timespec pause = { .tv_nsec = 5000000 }; static const vec2_t steps[] = { [LEFT] = { .x = -2, .y = 0 }, [RIGHT] = { .x = 2, .y = 0 }, [UP] = { .x = 0, .y = -2 }, [DOWN] = { .x = 0, .y = 2 }, }; static Display *dpy; static Window window; static GC ctx; static bool maze[GRID_SIZE][GRID_SIZE]; static void draw_walls(void) { XFillRectangle( dpy, window, ctx, PX(MARGIN), PX(MARGIN), PX(GRID_SIZE + 2), PX(WALL_THICKNESS)); XFillRectangle( dpy, window, ctx, PX(MARGIN), PX(MARGIN + WALL_THICKNESS + GRID_SIZE), PX(GRID_SIZE + 2), PX(WALL_THICKNESS)); XFillRectangle( dpy, window, ctx, PX(MARGIN), PX(MARGIN + WALL_THICKNESS), PX(WALL_THICKNESS), PX(GRID_SIZE)); XFillRectangle( dpy, window, ctx, PX(MARGIN + WALL_THICKNESS + GRID_SIZE), PX(MARGIN + WALL_THICKNESS), PX(WALL_THICKNESS), PX(GRID_SIZE - 1)); XFlush(dpy); } static void draw_maze(void) { const int margin_px = PX(MARGIN + WALL_THICKNESS); XClearArea( dpy, window, margin_px, margin_px, PX(GRID_SIZE), PX(GRID_SIZE), false); for (int x = 0; x < GRID_SIZE; ++x) { for (int y = 0; y < GRID_SIZE; ++y) { if (maze[x][y]) continue; const int left = margin_px + PX(x); const int top = margin_px + PX(y); XFillRectangle(dpy, window, ctx, left, top, PX(1), PX(1)); } } XFlush(dpy); } static void generate_maze(vec2_t p, vec2_t g) { maze[p.x][p.y] = true; draw_maze(); nanosleep(&pause, NULL); dir_t visit[] = { LEFT, RIGHT, UP, DOWN }; for (int i = 3; i > 0; --i) { const int r = rand() % (i + 1); const dir_t tmp = visit[r]; visit[r] = visit[i]; visit[i] = tmp; } vec2_t n; for (int i = 0; i < 4; ++i) { n.x = p.x + steps[visit[i]].x; n.y = p.y + steps[visit[i]].y; const bool x_in_bounds = n.x >= 0 && n.x < GRID_SIZE; const bool y_in_bounds = n.y >= 0 && n.y < GRID_SIZE; if (x_in_bounds && y_in_bounds && !maze[n.x][n.y]) { const int xi = (p.x + n.x) / 2; const int yi = (p.y + n.y) / 2; maze[xi][yi] = true; generate_maze(n, g); } } } int main(void) { // Seed random number generation from time struct timeval tv; gettimeofday(&tv, NULL); srand(tv.tv_usec); XEvent evt; dpy = XOpenDisplay(NULL); assert(dpy); // Create window and configure graphics context const int black = BlackPixel(dpy, DefaultScreen(dpy)); const int white = WhitePixel(dpy, DefaultScreen(dpy)); window = XCreateSimpleWindow( dpy, DefaultRootWindow(dpy), 0, 0, PX(WINDOW_SIZE), PX(WINDOW_SIZE), 0, white, white); Atom del = XInternAtom(dpy, "WM_DELETE_WINDOW", false); XSetWMProtocols(dpy, window, &del, 1); ctx = DefaultGC(dpy, DefaultScreen(dpy)); XSetForeground(dpy, ctx, black); // Map window XSelectInput(dpy, window, StructureNotifyMask); XMapWindow(dpy, window); do XNextEvent(dpy, &evt); while (MapNotify != evt.type); // Generate and draw maze memset(&maze, 0, sizeof(maze)); draw_walls(); const vec2_t start = { GOAL, GOAL }, end = { 0, 0 }; generate_maze(start, end); // Wait for window exit bool is_del = false; do { XNextEvent(dpy, &evt); if (ClientMessage == evt.type) is_del = (unsigned long)evt.xclient.data.l[0] == del; } while (!is_del); XCloseDisplay(dpy); return EXIT_SUCCESS; }