/* * Copyright (c) Camden Dixie O'Brien * SPDX-License-Identifier: AGPL-3.0-only */ #define _POSIX_C_SOURCE 199309L #include #include #include #include #include #include #include #include #define MAZE_WIDTH 958 #define MAZE_HEIGHT 538 #define PX(x) (x) #define GRID_WIDTH (2 * MAZE_WIDTH - 1) #define GRID_HEIGHT (2 * MAZE_HEIGHT - 1) #define WINDOW_WIDTH (GRID_WIDTH + 2) #define WINDOW_HEIGHT (GRID_HEIGHT + 2) #define ENTRANCE_X (-1) #define ENTRANCE_Y 0 #define EXIT_X GRID_WIDTH #define EXIT_Y (GRID_HEIGHT - 1) #define MAX_PATH_LENGTH (MAZE_WIDTH * MAZE_HEIGHT) #define STACK_SIZE MAX_PATH_LENGTH typedef enum { LEFT, RIGHT, UP, DOWN } dir_t; typedef struct { int x, y; } vec2_t; typedef bool (*coord_pred_t)(vec2_t c, vec2_t im); typedef bool (*visit_fn_t)(vec2_t c, vec2_t im); typedef struct { bool is_path : 1; bool visited : 1; } cell_t; static const struct timespec path_draw_pause = { .tv_nsec = 100000 }; static const vec2_t steps[] = { [LEFT] = { .x = -2, .y = 0 }, [RIGHT] = { .x = 2, .y = 0 }, [UP] = { .x = 0, .y = -2 }, [DOWN] = { .x = 0, .y = 2 }, }; static const vec2_t start = { 0, 0 }; static const vec2_t end = { GRID_WIDTH - 1, GRID_HEIGHT - 1 }; static cell_t maze[GRID_WIDTH][GRID_HEIGHT]; static Display *dpy; static Window window; static GC ctx; static void draw_cell(int x, int y) { XFillRectangle( dpy, window, ctx, 1 + PX(x + 1), 1 + PX(y + 1), PX(1), PX(1)); } static void clear_cell(int x, int y) { XClearArea( dpy, window, 1 + PX(x + 1), 1 + PX(y + 1), PX(1), PX(1), false); } static bool in_bounds(int x, int y) { const bool valid_x = x >= 0 && x < GRID_WIDTH; const bool valid_y = y >= 0 && y < GRID_HEIGHT; return valid_x && valid_y; } static bool finished_gen(int x, int y) { int nx, ny; for (int i = 0; i < 4; ++i) { nx = x + steps[i].x; ny = y + steps[i].y; if (in_bounds(nx, ny) && !maze[nx][ny].is_path) return false; } return true; } static void generate(vec2_t p) { vec2_t stack[STACK_SIZE], *sp = stack; maze[p.x][p.y].is_path = true; do { if (finished_gen(p.x, p.y)) { p = *(--sp); continue; } int nx, ny; do { dir_t d = rand() % 4; nx = p.x + steps[d].x; ny = p.y + steps[d].y; } while (!in_bounds(nx, ny) || maze[nx][ny].is_path); const int imx = (p.x + nx) / 2; const int imy = (p.y + ny) / 2; maze[imx][imy].is_path = maze[nx][ny].is_path = true; *sp++ = p; p.x = nx; p.y = ny; } while (sp != stack); } static void solve(vec2_t p, vec2_t *sp, vec2_t **top) { maze[0][0].visited = true; *sp++ = p; while (1) { if (end.x == p.x && end.y == p.y) { *sp++ = p; *top = sp; return; } int nx, ny, imx, imy; bool done = true; for (int i = 0; i < 4; ++i) { nx = p.x + steps[i].x; ny = p.y + steps[i].y; if (!in_bounds(nx, ny)) continue; imx = (p.x + nx) / 2; imy = (p.y + ny) / 2; if (maze[imx][imy].is_path && !maze[nx][ny].visited) { done = false; break; } } if (done) { p = *(--sp); continue; } maze[imx][imy].visited = maze[nx][ny].visited = true; *sp++ = p; p.x = nx; p.y = ny; } } int main(void) { // Seed random number generation from time struct timeval tv; gettimeofday(&tv, NULL); srand(tv.tv_usec); XEvent evt; dpy = XOpenDisplay(NULL); assert(dpy); // Create window and configure graphics context const int black = BlackPixel(dpy, DefaultScreen(dpy)); const int white = WhitePixel(dpy, DefaultScreen(dpy)); window = XCreateSimpleWindow( dpy, DefaultRootWindow(dpy), 0, 0, PX(WINDOW_WIDTH), PX(WINDOW_HEIGHT), 0, black, black); Atom del = XInternAtom(dpy, "WM_DELETE_WINDOW", false); XSetWMProtocols(dpy, window, &del, 1); ctx = DefaultGC(dpy, DefaultScreen(dpy)); // Create colormap and allocate colour for visited cells Colormap cm = XCreateColormap( dpy, window, DefaultVisual(dpy, DefaultScreen(dpy)), AllocNone); XColor xcol = { .red = 55555, .green = 10000, .blue = 10000 }; XAllocColor(dpy, cm, &xcol); const int red = xcol.pixel; // Map window XSelectInput(dpy, window, StructureNotifyMask); XMapWindow(dpy, window); do XNextEvent(dpy, &evt); while (MapNotify != evt.type); // Draw entrance and exit XSetForeground(dpy, ctx, white); draw_cell(ENTRANCE_X, ENTRANCE_Y); draw_cell(EXIT_X, EXIT_Y); XFlush(dpy); while (1) { // Generate memset(&maze, 0, sizeof(maze)); generate(end); // Draw maze XSetForeground(dpy, ctx, white); draw_cell(ENTRANCE_X, ENTRANCE_Y); for (int y = 0; y < GRID_HEIGHT; ++y) { for (int x = 0; x < GRID_WIDTH; ++x) { if (maze[x][y].is_path) draw_cell(x, y); else clear_cell(x, y); } } draw_cell(EXIT_X, EXIT_Y); XFlush(dpy); sleep(1); // Solve vec2_t path[MAX_PATH_LENGTH], *path_end; solve(start, path, &path_end); // Draw solution path XSetForeground(dpy, ctx, red); draw_cell(ENTRANCE_X, ENTRANCE_Y); const vec2_t *prev = &start; for (const vec2_t *p = path; p < path_end; ++p) { const int imx = (prev->x + p->x) / 2; const int imy = (prev->y + p->y) / 2; draw_cell(imx, imy); draw_cell(p->x, p->y); XFlush(dpy); nanosleep(&path_draw_pause, NULL); prev = p; } draw_cell(EXIT_X, EXIT_Y); XFlush(dpy); sleep(1); } // Wait for window exit bool is_del = false; do { XNextEvent(dpy, &evt); if (ClientMessage == evt.type) is_del = (unsigned long)evt.xclient.data.l[0] == del; } while (!is_del); XCloseDisplay(dpy); return EXIT_SUCCESS; }